intdash Edge Agent Developer Guide

intdash Edge Agent Version 1.23.0

6th edition (October 2022)

CD aptpod

intdash Edge Agent Developer Guide
Table of contents

Table of contents

01 Introduction 3
1l WA IS AG BN o e 3
1.2 MaiN A UIES ottt 3
1.3 SYS M FEOUITEIMIENES . e e e e 3
1.4 System CONfIgUIatioN .. .o 4
02 Get started 6
2.1 INSTAl At 0N e 6
2.2 Filestobeinstalled. 6
2.3 Startand stop the Agent ... i 7
03 Change settings 10
3.1 Edge information Setting ..o 11
3.2 Settings for using the pre-installed Device Connector..........coooiiiiiii i e, 12
3.3 Settings related to sending and receiving ofdatac.coiiiii 19
3.4 Settings for sending timing (filtering on the sender'sside)ocooiiin. 23
3.5 Settings related to saving RAW dataooviiiiiiiii 30
04 Add your own Device Connector 31
4.1 Configure to use your own Device CONNECIOr......c.iviiiiiii e 31
4.2 Write t0 FIFO from Device CONMNECIOTNttt 32
4.3 Read data from FIFO ..o 32
4.4 Automatic startup and termination of Device Connectors..........cocvvvviiiiiiiiiinnnnne. 33
05 Contact Us 35
06 Appendix 36
6.1 BaASE T oot 36
6.2 Filteratthe sender's Sideo 36
6.3 RAW daATa ot 42
6.4 RetransmisSiON dataooviiii i s 44
6.5 FIFO data format used between Agent and Device CONNectorcoovvviiiiiinnnnns 46
6.6 Al Settings fOr AQENt. .. i 52
0.7 AG BN OGS ettt e 58

2 Rev. 1cc92fc

intdash Edge Agent Developer Guide
01 Introduction

Introduction

This document describes how to use intdash Edge Agent (hereinafter referred to as Agent).

Important:
« This document is for general informational purposes only. Specifications in this docu-
ment are subject to change without notice and are not guaranteed.
« Screenshots used in descriptions are examples. Some displays or procedures might differ
depending on your environment and application version.

Note: Company names, service names, and product names mentioned in this document are
generally registered trademarks or trademarks of their respective owners. Trademark symbols
"™"and "®" are omitted in the text, figures, and tables.

Attention: This document has been translated using machine translation services and may
contain inaccuracies and translation errors. Please also refer to the official version in Japanese.

1.1 What is Agent?

Agent is agent software that sends and receives data to and from the intdash server.

The Agent can stream frequently occurring time series data to the intdash server with low latency.
Data that could not be sent due to a failure such as a network line disconnection will be automat-
ically retransmitted. This enables the data to be fully recovered to the intdash server.

1.2 Main features

« Streaming time series data

- Automatic retransmission of lost data

« Filtering and sampling of time series data

« Saving the acquired time series data as a dump file

1.3 System requirements

« Supported platforms
+ Linux on AMD64 architecture
« Raspbian on Raspberry Pi
« NVIDIA L4T on NVIDIA Jetson
« Minimum hardware requirements
« Intel Atom processor E3815, 1.46GHz or higher
« Recommended hardware requirements
 Multi-core CPU
+ 2 GB or more memory
- SSD

3 Rev. 1cc92fc

intdash Edge Agent Developer Guide
01 Introduction

Important: If the amount of data is large and the CPU load is too high, data may be lost.
The guideline for the amount of data that can be processed without loss is as follows. (The fol-
lowing are approximate values that apply when you are using a device connector with a small
processing load. The limit performance will increase or decrease depending on the processing
load of the device connector.)
« When using VTC 1910-S (Intel Atom E3815 1.46GHz)
« Sending small data frequently: about 8B(bytes) / unit, 24000 units / second
- Sending large data infrequently: about 0.98MB / unit, 10 units / second
« When using Raspberry Pi 4 Model B
« Sending small data frequently: about 8B(bytes) / unit, 100000 units / second
- Sending large data infrequently: about 0.98MB / unit, 80 units / second
If you anticipate a heavy load on the CPU, we recommend that you perform test measurements
inadvance. After performing test measurements, execute the following command on the edge
to check the messages in syslog.

$ cat /var/log/syslog | grep -e"ring is full” -e "data buffer is overflow” | grep -v PacketSender

If you see a message ring is full Or data buffer is overflow in the syslog (except for the Pack-
etSender message), some data has been lost between the device connector and the agent.

1.4 System configuration

The Agent consists of software modules: Device Connectors, a manager, and clients.

« The Device Connector receives data from the device.
- The manager performs various processes such as filtering and sampling.
« The client sends the time series data to the intdash server.

intdash Edge Agent
«group»
«group» Client
Plugin
Status 1 L Realtime API (Websocket)
«group» . _— eenm

Device Connector — Realtime data__— —

— — —

— _— p T
User | ffobeich || | - — — Bulk data 7 || ~opticnal» Realtime API (Websocket) B S
User Device Device Connector fiforx 1ch ||| FIFO [| Manager P Bulk REST API (HTTP)
 ———— | Ryl — 7 —7
— / g -

—— 2y
- - i 2d - Résend data -
Y — —] -
Preinstalled I - -
Device Connector [§—— | RAW dgta v

il i
Fégend Safs_Fesemdtere—,
2 ‘

Local Disk ~.
RAW file T q Resend file

1.4.1 Device connector

A Device connector is software for connecting various devices and the Agent.
The default Device Connector, the intdash-edge-logger, and 6 settings are installed with the Agent.
- v4lh264
« gstreamer_h264
* mjpeg
* nmea

» socketcan
- canopen

Configuration is required to use the Device Connector. See Settings for using the pre-installed
Device Connector (p. 12) for instructions on how to configure the Device Connectors above.

Users can connect devices that are not supported by intdash-edge-logger by providing a new Device

4 Rev. 1cc92fc

intdash Edge Agent Developer Guide
01 Introduction

Connector. See Add your own Device Connector (p. 31) for information on how to add Device
Connectors other than intdash-edge-logger.

Note: The word "logger" is sometimes used in configuration files, but "logger" refers to the
Device Connector.

1.4.2 Plugin
Apluginis aninternal software module that interfaces the Device Connector with the Agent. There
are the following two types.

FIFO plugin
Sends and receives data between the Agent and a Device Connector via a FIFO (named pipe).

Status plugin
This plugin does not connect to a Device Connector, but collects status information.

Note:
« Plugins need to be specified in loggers[].details.plugin in the configuration file. See De-
vice connector settings (p. 57) for more information.
« The Device Connector intdash-edge-logger provided by Aptpod does not use the FIFO plu-
gin. Therefore, when using intdash-edge-logger, it is not necessary to define plugin in the
configuration file.

1.4.3 Manager

The manager is the software module at the center of the Agent. It manages the start and stop of
other modules, aggregates the data collected from the Device Connectors, processes filtering and
sampling, and exports RAW data.

1.4.4 Client

A clientin the Agentis a software module responsible for communication between the Agent and
the intdash server. A client is responsible for real-time transmission using intdash's Realtime API,
transmission in high-efficiency format using intdash REST API, and retransmission.

Realtime client
Sends data in real time using intdash's Realtime APl (WebSocket).

Bulk client
Sends data in bulk at regular intervals of several seconds using intdash's Realtime APl (Web-

Socket).

Resend client
Resends the data at regular intervals that the Realtime and Bulk clients were unable to send.
Both Realtime APl (WebSocket) and REST API can be used to communicate with the intdash
server.

Control client
Receives data in real time using intdash's Realtime API (WebSocket).

5 Rev. 1cc92fc

intdash Edge Agent Developer Guide
02 Get started

Get started

This section describes how to install the Agent and how to start and stop it.

The installer supports the following environments.

Distribution Version Architecture

Ubuntu 22.04(LTS), 20.04(LTS), 18.04(LTS), 16.04(LTS) | amd64, arm64, armhf
Debian 10,9 amdo64

Raspbian based on Debian 10 armhf

2.1 Installation

In the environment where you want to install the Agent, execute the installer as follows.

For ${DISTRIBUTION} and ${ARCHITECTURE} }, select one from the table below.

DISTRIBUTION ARCHITECTURE
ubuntu amd64, armhf, arm64
debian amdo64

raspbian armhf

$ sudo apt-get update
$ sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg-agent \
lsb-release
$ curl -s --compressed \
"https://repository.aptpod.jp/intdash-edge/linux/${DISTRIBUTION}/gpg" | sudo apt-key add -
$ echo "deb [arch=${ARCHITECTURE}] \
https://repository.aptpod.jp/intdash-edge/linux/${DISTRIBUTION} \
$(1lsb_release -cs) \
stable” \
| sudo tee /etc/apt/sources.list.d/intdash-edge.list
$ sudo apt-get update
$ sudo apt-get install intdash-edge

2.2 Files to be installed

When installed the Agent with the default settings, the following files and folders are placed.

+ /etc
+ opt

+ intdash # (1)

- manager.conf # (2)

- logger.conf.canopen # (3)

- logger.conf.nmea # (4)

- logger.conf.gstreamer_h264 # (5)

- logger.conf.mjpeg # (6)

(continues on next page)

6 Rev. 1cc92fc

intdash Edge Agent Developer Guide
02 Get started

(continued from previous page)

- logger.conf.socketcan # (7)
- logger.conf.v4lh264 # (8)
+ /opt
+ vm2m
+ bin # (9)
+ etc # (10)
+ lib # (11)
+ sbin # (12)
- intdash-edge-client # (13)
- intdash-edge-logger # (14)
- intdash-edge-manager # (15)
+ share
+ licenses # (16)
Num- File or directory description
ber
(1) Directory for storing configuration files
(2) Sample configuration file for the agent
(3) Sample configuration file for canopen type device connector
(4) Sample configuration file for nmea type device connector
(5) Sample configuration file for gstreamer_h264 type device connector
(6) Sample configuration file for mjpeg type device connector
(7) Sample configuration file for socketcan type device connector
(8) Sample configuration file for v4lh264 type device connector
(9) Directory for tools
(10) Directory for storing static configuration files
(11) Directory for libraries used by Agent (or intdash-edge-logger)
(12) Directory for the Agent executable and the aptpod device connectors.
(13) Executable file of a client that sends data over the network.
(14) Device connector made by aptpod
(15) Manager executable, the core of the Agent
(16) Directory where information about open source libraries used by the Agent is stored

2.3 Start and stop the Agent

2.3.1 Start the Agent

To start the Agent, execute the following command.

$ sudo \

LD_LIBRARY_PATH=/opt/vm2m/1ib \
/opt/vm2m/sbin/intdash-edge-manager -C <full-path-to-the-configuration-file>

For full-path-to-the-configuration-file, you can use the pre-installed configuration file /etc/opt/
intdash/manager.conf. The pre-installed configuration file uses the environment variables.

7 Rev. 1cc92fc

Variable name
INTDASH_EDGE_UUID

INTDASH_EDGE _SECRET

INTDASH_EDGE_SERVER

INTDASH_EDGE_APPDIR
INTDASH_EDGE_RUNDIR
INTDASH_EDGE_BINDIR
INTDASH_EDGE_SBINDIR
INTDASH_EDGE_LIBDIR
INTDASH_EDGE _CONFDIR

$ sudo \

LD_LIBRARY_PATH=/opt/vm2m/1lib \

intdash Edge Agent Developer Guide
02 Get started

Description

The UUID to identify this edge. Use the one issued by the int-
dash server. (Example: f90f2b42-66a5-4a57-8e99-468c36ebb6f2)
The token for authentication. Use the one issued for this edge
by the intdash server. (Example: sEh9ZHPoKX8QYU-vONoedZPzxGBF . . .
....... iBn5fn_eFM) See (p. 11) for more
information.

Enter the FQDN of the intdash server. (Example: dummy.intdash.
ip)

Please note that depending on your environment, the server
name used by the edge and the server name used by the web
applications may be different. In the case of intdash environ-
ments operated by aptpod, the server name for edges is usually
<xxxxx>.intdash.jp and the server name for web applications is
<xxxxx>.vm2m. jp (the <xxxxx> part is the same).

Application data storage location (example: /var/lib)
Temporary file location (example: /var/run)

Script file location (example: /opt/vm2m/bin)

Executable file location (example: /opt/vm2m/sbin)

Library location (example: /opt/vm2m/1ib)

Configuration file location (example: /etc/opt/intdash)

INTDASH_EDGE_UUID=f90f2b42-66a5-4a57-8e99-468c36ebb6f2 \
INTDASH_EDGE_SECRET=sEh9ZHPoKX8QYU-vON0oe@ZPzXxGBF. iBn5fn_eFM \
INTDASH_EDGE_SERVER=dummy . intdash. jp \

INTDASH_EDGE_APPDIR=/var/lib \
INTDASH_EDGE_RUNDIR=/var/run \

INTDASH_EDGE_BINDIR=/opt/vm2m/bin \
INTDASH_EDGE_SBINDIR=/opt/vm2m/sbin \
INTDASH_EDGE_LIBDIR=/opt/vm2m/1ib \
INTDASH_EDGE_CONFDIR=/etc/opt/intdash \

/opt/vm2m/sbin/intdash-edge-manager -C /etc/opt/intdash/manager.conf

Note: If you setthe log level to the environment variable INTDASH_LOG, logs of that level or higher
will be output. Available log levels are as follows. If not specified, info or higher logs will be
output.

« debug (debug, info, warn, and error logs are output)

- info (info, warn, and error logs are output)

- warn (warn and error logs are output)
« error (error logs are output)

* quiet (no log is output)

In the pre-installed configuration file /etc/opt/intdash/manager.conf, Device Connectors are not con-
figured. Therefore, only the Status plugin will work. The Status plugin gets the system information,
network information, and Agent status as shown below and sends them to the intdash server.

Data type Data ID Channel Content

String s00 255 System information
String s20 255 Network information
String s50 255 Agent status

8 Rev. 1cc92fc

intdash Edge Agent Developer Guide
02 Get started

2.3.2 Stop the Agent

To stop the Agent, do one of the following:

 Send SIGINT
- Execute the following command:

$ LD_LIBRARY_PATH=/opt/vm2m/1lib /opt/vm2m/sbin/intdash-edge-manager -k

Attention: It may take about 10 seconds to stop the Agent.

2.3.3 Reference: Sequence from start to stop of the Agent

Client Device Connector

User Preinstalled
Manager Client Realtime Client Resend Device Connector Device Connector

User
1
| Start

<<cregte>>

Y

<<cregte=>

i
I
|
i
i
i
i
i

. !

- i

i

i

<<cregte>>

I
1
1
i
i
i
i
i
i
i
i
- |
-]
1
]

<<(cregte=>

Y

loop / [Every datall

i _FIFO format dat

Y]

a A

ata
L
o

FIFO format dati

data

k-
V-

= T e b

Stop ! 10 seconds required to finish. b]

1
' <<destroy=> _

-

It << destroy=>=>

Y

| <<destiroy=>=>

Y

| =<=destroy>=>

|
I
Exited |
|
I
|
I

M-——=—==——mmmmmmmm e m———— o

-
0]
&

Manager Client Realtime Client Resend User Preinstalled
Device Connector Device Connector

9 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

03 Change settings

The Agent sends the data received from the Device Connector to the intdash server. During this
process, the data can be filtered or resent depending on the status of the network.

The basic configuration is done in the manager configuration file (e.g. manager. conf).

To use Device Connectors, one configuration file is required for each Device Connector. The config-
uration file for the Device Connector to be used must be specified in the manager's configuration
file.

Manager configuration file Device Connector configuration files
/etc/opt/intdash/manager.conf /etc/opt/intdash/logger.conf.socketcan
{ {
"loggers": ["type": "socketcan",
{ "data_handler": { ... },
"path": "/opt/vm2m/sbkin/intdash-edge-logger", "manager_client": {
"conf": "/etc/opt/intdash/logger.conf.socketcan"/ "tx_path": "j4war/run/intdash/logger 001.tx",
"connections™: [{ x
"channel™: 1, /
"fifo tx": "/var/rufi/intdash/logger 001.tx", }
"fifo_rx": "/var/rOn/intdash loqqerj)f)l.rx"v 1Same FIFO |~
H / ~ P
}(, Same FIFO
"path": "/opt/vm2mysbin/intdash—edge—logger",
"conf": ™ . . ",
"connectio:
"channel’ i
"fifo_tx' (ntdash/logger 002.tx" /etc/opt/intdash/logger.conf.v4lh264
"fifo rx": "/var :;un/{w‘ntda h/logger 002.rx" \
}H \ x AN {
7, \ \ "type": "v4lh264",
. A . "data_handler": { ... },
1, ; | Same FIFO ient": {
. . "/var/run/intdash/logger 002.tx",
} SpeCIfy the DG}IICE Connec’[or Wvar/run/intdash/logger_ 002.rx"
configuration files
Same FIFO ..

\(the Device Connectors are started .
using these configuration files))

Fig. 1 Example of Manager configuration file and Device Connector configuration files

See All settings for Agent (p. 52) for a list of configurable items in the configuration file. Here are
some typical configuration examples.

Note: The "logger" in the configuration file refers to the Device Connector.

1 0 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

3.1 Edge information setting

Set the edge account that the Agent uses to connect to intdash. Each client that communicates
with the intdash server must be configured individually. As shown in the example below, specify
the edge account UUID and the token in the settings of each client.

Note: Basically, use the same edge account for all clients of one Agent. In the example below,
the Realtime and Resend clients use the same edge account.

Edge information setting example

{
"clients”": [
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (1)
"my_secret”: "SEh9ZHPoKX8QYU-VONOE@ZPzXGBF.............c.ouvuuiuvn... iBn5fn_eFM", # (2)
"type"”: "realtime”,
},
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (1)
"my_secret”: "SEh9ZHPoKX8QYU-VONOe@ZPzXGBF......... ..., iBn5fn_eFM", # (2)
"type": "resend”,
}
1,
}
Num- Field Description
ber
(1) my_id The edge UUID to assign to this client.
(2) my_secret Client secret for authentication.

Attention: Note when updating from a previous version of Edge Agent.

Edge Agent version 1.19.0 and later uses an edge UUID and a client secret as authentication
information. To use a client secret, you need to set my_secret and auth_path in clients Of manager.

conf.

If you want to continue to use the configuration file manager.conf from Edge Agent 1.19.0 or
earlier, refer to the configuration template /opt/vm2m/etc/manager.conf and add my_secret and
auth_path. The value of auth_path should be copied from the configuration template /opt/vm2m/

etc/manager.conf.

Note that authentication with edge tokens can still be used. If you want to use your edge
token, set the edge token as my_token instead of my_secret. (The configuration file manager.conf
from Edge Agent 1.19.0 and earlier can still be used.)

1 1 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

3.2 Settings for using the pre-installed Device Connector

Settings are required to use the pre-installed Device Connector intdash-edge-logger.

To configure the Device Connector, configure both the manager's configuration file (man-
ager.conf) and the Device Connector's configuration file.

By preparing a configuration file for each Device Connector and setting multiple Device Connec-
tors in the manager's configuration file, you can launch intdash-edge-logger in multiple processes
to collect data from multiple devices.

Note: Acquiring video data from a camera
There are three ways to acquire video data using the pre-installed Device Connectors.

« Acquire video from a camera that can output Motion JPEG and use an mjpeg-type Device
Connector.

« Acquire video from a camera that can output H.264 and use a v4lh264-type Device Con-
nector.

« Acquire H.264 output from GStreamer, using a Device Connector of type gstreamer_h264
(e.g., when converting RAW data from a camera to H.264 using GStreamer and then ac-
quiring the converted data).

Choose an appropriate method according to the data format of your camera output.
The data format can be checked by installing the v412-ct1 command.
The following command lists the formats that the camera device /dev/videod can output.

$ v412-ctl -d /dev/video® --list-formats
You can also check the resolution and frame rate that the camera can output with the following
command.

$ v4l2-ctl -d /dev/videod --list-formats-ext

« Manager configuration file example (manager.conf) (p. 13)
» Device connector configuration file example (p. 14)
+ Setting example of mjpeg type Device Connector (p. 14)
+ Setting example of v4lh264 type Device Connector (p. 15)
» Example setting of gstreamer_h264 type Device Connector (p. 16)
» Setting example of nmea type Device Connector (p. 17)
» Setting example of socketcan type Device Connector (p. 18)
« Setting example of canopen type Device Connector (p. 18)

1 2 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

3.2.1 Manager configuration file example (manager.conf)

In the manager's configuration file, fill in the Device Connector settings in loggers.

{
"loggers": [
{ # (1)
"path”: "/opt/vm2m/sbin/intdash-edge-logger”, # (2)
"conf": "/etc/opt/intdash/logger.conf.mjpeg”, # (3)
"connections”": [{
"channel”: # (4)
"fifo_tx": "/var/run/intdash/logger_001.tx", # (5)
"fifo_rx": "/var/run/intdash/logger_001.rx" # (6)
1
}
{ # (7)
"path”: "/opt/vm2m/sbin/intdash-edge-logger”,
"conf": "/etc/opt/intdash/logger.conf.nmea”,
"connections”: [{
"channel”:
"fifo_tx": "/var/run/intdash/logger_002.tx",
"fifo_rx": "/var/run/intdash/logger_002.rx"
}
},
1,
}
Num- Field Description
ber
(1 |- The connection with one Device Connector is repre-
sented by one JSON object.
(2) path Full path of the pre-installed Device Connector.
(3) |conf The configuration file for the Device Connector. Here, the

(4) channel

(5) | fifo_tx
(6) fifo_rx
7) -

setting logger.conf.mjpeg for Motion JPEG is specified as an
example.

The channel (0-255) to be used for this Device Connector.
A channel number is assigned to the data obtained from
the Device Connector. The channel number should not
be duplicated with other Device Connectors.

The FIFO path that this Device Connector uses to send
data. The path should not overlap with other Device Con-
nectors.

The FIFO path that this Device Connector uses to receive
data. The path should not overlap with other Device Con-
nectors.

If you want to use more than one Device Connector, con-
figure the second Device Connector from here. Make the
settings in the same way as above.

1 3 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

3.2.2 Device connector configuration file example

Setting example of mjpeg type Device Connector

The mjpeg type Device Connector acquires Motion JPEG data from a UVC (USB Video Class) camera
that supports Video4Linux. Therefore, the camera needs to be able to output Motion JPEG.

Configuration file /etc/opt/intdash/logger.conf.mjpeg

{

"type”: "mjpeg”, # (1)

"data_handler"”: {
"path”: "/dev/video@”, # (2)
"baudrate”: 15, # (3)
"camera_width”: 320, # (4
"camera_height": 240, # (5)
"camera_hwencodedelay_msec”: 100 # (6)

},

"manager_client”: {
"tx_path”: "/var/run/intdash/logger_XXX.tx", # (7)
"rx_path”: "/var/run/intdash/logger_XXX.rx" # (8)

},

"basetime”: "/var/run/intdash/basetime”, # (9)

"status”: "/var/run/intdash/logger_XXX.stat" # (10)

}

Num- Field Description

ber

(1) | type The type of the Device Connector. For mjpeg type, use

"mjpeg”.

(2) path Device path

(3) | baudrate Frame rate (1, 5, 10, 15, or 30) [fps]

(4) camera_width Frame width (320 or 640)

(5) camera_height Frame height (240 or 480)

(6) | camera_hwencodedelay_msec Timestamp offset (camera processing time) [msec]. For

(7) tx_path

(8) rx_path

(9) basetime

(10) | status

example, if you set 100, the timestamp of 100 millisec-
onds ago will be used assuming that the processing in
the camera took 100 milliseconds.

The FIFO path used by the Device Connector to send data.
Set the same path as the fifo_tx for this Device Connector
in manager.conf.

The FIFO path used by the Device Connector to receive
data. Set the same path as the fifo_rx for this Device Con-
nector in manager.conf.

The path to the file that the Device Connector uses for
time management. Set the same value as manager.base-
time in manager.conf.

The path to the file that the Device Connector writes the
status to.

1 4 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

Setting example of v4lh264 type Device Connector

The v4lh264 type Device Connector acquires H.264 data from a UVC (USB Video Class) camera that
supports Video4Linux. Therefore, the camera needs to be able to output H.264.

Configuration file /etc/opt/intdash/logge

{
"type": "v41h264",
"data_handler": {
"path”: "/dev/video®",
"baudrate”: 15,
"camera_width": 1920,
"camera_height": 1080,
"camera_hwencodedelay_msec”: 100
},
"manager_client”: {
"tx_path"”: "/var/run/intdash/logger_XXX.tx
"rx_path"”: "/var/run/intdash/logger_XXX.rx
},
"basetime”: "/var/run/intdash/basetime”,
"status”: "/var/run/intdash/logger_XXX.stat"
}

Num- Field

ber

(1) | type

(2) path

(3) baudrate

(4) camera_width

(5) | camera_height

(6) | camera_hwencodedelay_msec

(7) tx_path

(8) ' rx_path

(9) basetime

(10) status

r.conf.v41lh264

(1)

2
3
4
(5
(6)

T

o # ()
" #(8)

(9)
(10)

Description

The type of Device Connector. For v4lh264 type, set to
"v4lh264".

Device path

Frame rate (5, 10, 15, 30) [fps]

Frame width (1080, 1920)

Frame height (720, 1020)

Timestamp offset (camera processing time) [msec]. For
example, if you set 100, the timestamp of 100 millisec-
onds ago will be used assuming that the processing in
the camera took 100 milliseconds.

The FIFO path used by the Device Connector to send data.
Set the same path as the fifo_tx for this Device Connector
in manager.conf.

The FIFO path used by the Device Connector to receive
data. Set the same path as the fifo_rx for this Device Con-
nector in manager.conf.

The path to the file that the Device Connector uses for
time management. Set the same value as manager.base-
time in manager.conf.

The path to the file that the pre-installed Device Connec-
tor writes the status to.

1 5 Rev. 1cc92fc

Example setting of gstreamer_h264 typ

intdash Edge Agent Developer Guide
03 Change settings

e Device Connector

The gstreamer_h264 type Device Connector acquires H.264 video from GStreamer. Therefore,

GStreamer needs to output H.264.

Configuration file /etc/opt/intdash/logge

{
"type": "gstreamer_h264",
"data_handler": {
"path”: "/dev/video®",
"baudrate”: 15,
"camera_width": 1920,
"camera_height": 1080,
"camera_keyperiod": 150,
"camera_hwencodedelay_msec”: 100,
"command”: "gst-launch-1.0 -q v412src devi
—FPS/1 ! queue ! vaapijpegdec ! queue ! vaap
—bframes=0 keyframe-period=$_KEYPERIOD ! fds
},
"manager_client”: {
"tx_path"”: "/var/run/intdash/logger_XXX.tx
"rx_path”: "/var/run/intdash/logger_XXX.rx
},
"basetime”: "/var/run/intdash/basetime”,
"status”: "/var/run/intdash/logger_XXX.stat"
}

Num- Field

ber

(1) | type

(2) path

(3) baudrate

(4) | camera_width

(5) | camera_height

(6) | camera_keyperiod

(7) camera_hwencodedelay_msec

(8) | command

(9) | tx_path

(10) ' rx_path

(11) | basetime

(12) status

r.conf.gstreamer_h264

(1)

2
(€]
€))
(%)
(6)
(7)
ce=$_PATH ! image/jpeg,width=$_WIDTH,height=$_HEIGHT,framerate=$_
ipostproc ! queue ! vaapih264enc rate-control=1 bitrate=3072 max-
ink fd=1" # (8)

T

", # (9

"% (10)
(11)
(12)

Description

The type of Device Connector. For gstreamer_h264 type,
set to "gstreamer_h264".

Device path

Frame rate (1, 5, 10, 15, 30) [fps]

Frame width (1080, 1920)

Frame height (720, 1020)

Keyframe interval (set frame rate x 10)

Timestamp offset (camera processing time) [msec]. For
example, if you set 100, the timestamp of 100 millisec-
onds ago will be used assuming that the processing in
the camera took 100 milliseconds.

GStreamer command. Set the pipeline suitable for the
camera and the runtime system so that H.264 data is out-
put from the standard output of the command.

The FIFO path used by the Device Connector to send data.
Set the same path as the fifo_tx for this Device Connector
in manager.conf.

The FIFO path used by the Device Connector to receive
data. Set the same path as the fifo_rx for this Device Con-
nector in manager.conf.

The path to the file that the Device Connector uses for
time management. Set the same value as manager.base-
time in manager.conf.

The path to the file that the pre-installed Device Connec-
tor writes the status to.

1 6 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

In the command, other setting values can be referred to by using the following variables.

S_PATH
The value set for path

S_FPS
The value set to baudrate

S _WIDTH
The value set to camera_width

S_HEIGHT
The value set to camera_height

S_KEYPERIOD
The value set to camera_keyperiod

Setting example of nmea type Device Connector
nmea type Device Connector acquires NMEA data from GPS device

Configuration file /etc/opt/intdash/logger.conf.nmea

{
"type": "nmea”,
"data_handler"”: {
"path”: "/dev/ttyXX",
"baudrate”: 57600
},
"manager_client”: {
"tx_path”: "/var/run/intdash/logger_XXX.tx
"rx_path”: "/var/run/intdash/logger_XXX.rx
},
"basetime”: "/var/run/intdash/basetime”,

"status”: "/var/run/intdash/logger_XXX.stat"
}

Num- Field
ber

(1) type
(2) path

(3) | baudrate
(4) tx_path

(5) rx_path

(6) basetime

(7) status

(1)

(2)
(3)

", #4)
" #(5)

(6)

Description

The type of Device Connector. For nmea type, set to
"nmea".

Device path

Communication baud rate with GPS module [bps]

The FIFO path used by the Device Connector to send data.
Set the same path as the fifo_tx for this Device Connector
in manager.conf.

The FIFO path used by the Device Connector to receive
data. Set the same path as the fifo_rx for this Device Con-
nector in manager.conf.

The path to the file that the Device Connector uses for
time management. Set the same value as manager.base-
time in manager.conf.

The path to the file that the pre-installed Device Connec-
tor writes the status to.

1 7 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

Setting example of socketcan type Device Connector
A socketcan type Device Connector gets CAN data from the open source SocketCAN driver.

Configuration file /etc/opt/intdash/logger.conf.socketcan

{
"type": "socketcan”, # (1)
"data_handler"”: {
"path”: "can@", # (2)
"baudrate”: 500, # (3)
"listenonly”: # (4)
},
"manager_client”: {
"tx_path”: "/var/run/intdash/logger_XXX.tx", # (5)
"rx_path”: "/var/run/intdash/logger_XXX.rx" # (6)
},
"basetime”: "/var/run/intdash/basetime”, # (7)
"status”: "/var/run/intdash/logger_XXX.stat" # (8)
}

Num- Field Description

ber

(1) | type The type of Device Connector. For socketcan type, set to
"socketcan".

(2) |path Interface name

(3) | baudrate CAN bus baud rate (125, 250, 500, 1000) [Kbps]

(4) listenonly (int) O: returns ACK, non-zero: does not return ACK

(5) tx_path The FIFO path used by the Device Connector to send data.
Set the same path as the fifo_tx for this Device Connector
in manager.conf.

(6) rx_path The FIFO path used by the Device Connector to receive
data. Set the same path as the fifo_rx for this Device Con-
nector in manager.conf.

(7) basetime The path to the file that the Device Connector uses for
time management. Set the same value as manager.base-
time in manager.conf.

(8) | status The path to the file that the pre-installed Device Connec-

tor writes the status to.

Setting example of canopen type Device Connector

A canopen type Device Connectoracquires CANOpen data from the open source SocketCAN driver.

Configuration file /etc/opt/intdash/logger.conf.canopen

{

"type”: "canopen”, # (1)

"data_handler"”: {
"path”: "can@", # (2)
"baudrate”: 500, # (3)
"listenonly”: @ # (4)

},

"manager_client”: {
"tx_path"”: "/var/run/intdash/logger_XXX.tx", # (5)
"rx_path"”: "/var/run/intdash/logger_XXX.rx" # (6)

(continues on next page)

1 8 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

(continued from previous page)

},

"basetime”: "/var/run/intdash/basetime”, # (7)

"status”: "/var/run/intdash/logger_XXX.stat" # (8)
}

Num- Field Description

ber

(1) | type The type of Device Connector. For canopen type, set to
"canopen".

(2) path Interface name

(3) | baudrate CAN bus baud rate (125, 250, 500, 1000) [Kbps]

(4) listenonly (int) O: returns ACK, non-zero: does not return ACK

(5) |tx_path The FIFO path used by the Device Connectorto send data.
Set the same path as the fifo_tx for this Device Connector
in manager.conf.

(6) rx_path The FIFO path used by the Device Connector to receive
data. Set the same path as the fifo_rx for this Device Con-
nector in manager.conf.

(7) basetime The path to the file that the Device Connector uses for
time management. Set the same value as manager.base-
time in manager.conf.

(8) | status The path to the file that the pre-installed Device Connec-

tor writes the status to.

3.3 Settings related to sending and receiving of data

The Agent can receive data from the intdash server and send it to the Device Connector.

The following is an example of settings for sending and receiving data between two agents.

3.3.1 Setting example for sending and receiving CAN data (destination is not

specified)

The following example is a configuration for an Agent to send CAN data to another Agent via the
intdash server.

In this configuration example, the receiving Agent receives the CAN data sent by the sending Agent
on channel 10.

1 9 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

INEC basn® server

A

« Channel: 10
- Datatype: CAN
Channel : 10 « CANID:
0x00000001 or 0x00000010
“Realtime” client ‘ “Control” client |
Source edge (Agent) Destination edge (Agent)
UUID: f90f2b42---
T
| Device connector |
T
| CAN device |

Setting example of CAN data sender edge (destination is not specified)

{
"clients": [{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (1)
"my_secret”: "SEh9ZHPoKX8QYU-VONOe@ZPzXGBF.............ccvuininenn.. iBn5fn_eFM", # (2)
"type”: "realtime”, # (3)
1,
"loggers”: [{ # (4)
"connections”: [{
"channel”: 10, # (5)
1,
1,
}
Num- Field Description
ber
(1) my_id UUID of the sending edge (this edge)
(2) |my_secret Client secret for the sending edge (this edge). Reference:
Edge information setting (p. 11).
(3) type The Realtime client realtime is specified for real-time
transmission.
(4) | loggers Set the Device Connector that acquires CAN data.
(5) |channel The channel to send data.

20 Rev. 1cc92fc

Setting example of CAN data receiving edge

{
"clients”: [{

"my_id"”: "c35618bf-aa2c-4abc-8a4e-5b157b90cef”,

"my_secret”: "hsNxJhvDNHR2QcXbX1l........................

"down_dst_id": "00000000-0000-0000-0000-000000000000" ,
"ctlr_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2",
"ctlr_flts":[

{

"channel”: 10,

"dtype"”: 1,

"ids”: [1, 16]
}

]’
"type": "control”,

1,
"loggers”: [{
"connections”: [{
"channel”: 10,

}],

}],

21

intdash Edge Agent Developer Guide

(1)
ZORWKVFPs_neAkjTNSO5”, # (2)

(3)

(4)

(5)

(6)
#(7)
(8)

(9)

(10)

03 Change settings

Rev. 1cc92fc

Num- Field
ber

(1) |my_id

(2) my_secret
(3) | down_dst_id
(4) ctlr_id
(5) ctlr_flts
(6) | channel
(7) dtype

(8) |ids

(9) | type

(10) ' channel

intdash Edge Agent Developer Guide
03 Change settings

Description

UUID of the receiving edge (this edge)

Client secret for the receiving edge (this edge). Refer-
ence: (p. 11).

Data addressed to the UUID specified here is received. If
0000. .. is specified, the data is received no matter what
the destination of the data is.

UUID of the source edge of the data to be received (only
the data sent from the specified edge is received)

A filter that specifies the data to receive. Specify by the
combination of channel, iSCP data type, and ID. Multiple
filters can be set (allow list). (You can filter the data re-
ceived from the intdash server. For more information on
filtering data to be received, refer to the iSCP 1.0 docu-
mentation.)

Channel of data to receive (In this example, only the data
of channel 10 is received.)

The type of data to receive. Specify the iSCP data type
code in decimal notation. (In this case, 1 represents CAN.
Only CAN data is received.)

CAN ID of the data to be received (This example shows
that only the data whose CAN ID is 0x00000001 Or 0x00000010
is received. In the case of CAN data, if you set the value
to an empty array [1, data of any ID will be received.)
Use the Control client (control) to receive data.

The channel on which the Device Connector receives
data. In this example, this edge uses channel 10.

22 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

Important: In the dtype field, specify the iSCP data type code in decimal notation. The iSCP data
type codes are as follows.

Data type code (deci- Data type

mal)

0x01 (1) CAN

0x02 (2) NMEA

0x03 (3) General Sensor

0x04 (4) Controlpad

0x05 (5) MAVLink 2 Packet (Communication protocol for Micro Air Vehi-
cles/drones)

0x09 (9) JPEG

Ox0A (10) String

0x0B (11) Float (Double precision floating point number)

0x0C (12) Int (64bit signed integer)

0x0D (13) H.264

OxOE (14) Bytes (Byte sequence)

0xOF (15) PCM (WAVE)

0x10 (16) AAC (ADTS)

OX7F (127) Generic (Generic binary data)

Note that the above data type codes for iSCP are different from the data type codes for
(p. 46).

3.4 Settings for sending timing (filtering on the sender's side)

By setting a filter on the sending agent, you can distribute the data to the Realtime client or Bulk
client that sends the data to the intdash server, and adjust the data transmission timing. For more

information on filters, see (p. 36).
(p. 23)
. (p. 25)
. (p. 27)
. (p. 28)

3.4.1 A setting example in which low frequency data is sent in real time and the
rest of the data is sent later.

If the network bandwidth is narrow, sampling can be used to thin out the data so that only some
data can be sent by the Realtime client and the rest of the data can be sent by the Resend client
when the bandwidth is restored.

A setting example where channel 1 is sampled at 1-second intervals, the sampled data is sent by
the Realtime client, and the rest of the data is sent by the Resend client

{
"manager”: {
"filters": [
(continues on next page)

2 3 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

(continued from previous page)

{
"name”: "sampling”, # (1)
"channel”: "1", # (2)
"target”: "realtime”, # (3)
"setting”: [
{
"key": "rate", # (4)
"value”: "1000" # (5)
3}
]
}
1,
},
"clients”: [
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (6)
"my_secret”: "SEh9ZHPoKX8QYU-VONOE@ZPZzXGBF...........c.uuurinenenon.. iBn5fn_eFM", # (7)
"type": "realtime”, # (8)
"protocol”: "mod_websocket.v2", # (9)
},
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (6)
"my_secret”: "SEh9ZHPoKX8QYU-VONOEQZPZzXGBF.............uvurirenenon.. iBn5fn_eFM", # (7)
"type": "bulk"”, # (10)
"protocol”: "mod_websocket.v2", # (9)
"store_cycle": @, # (11)
}
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (6)
"my_secret”: "SEh9ZHPoKX8QYU-VONOe@ZPzXGBF.............oouuiuinenon.. iBn5fn_eFM", # (7)
"type": "resend”, # (12)
"protocol”: "mod_http”, # (13)
}
1,
"loggers": [{
"connections”: [{
"channel”: 1, # (14)
1,
1,

24 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

Num- Field Description

ber

(M) name The type of filter, sampling.

(2) channel The channel to be filtered. In this example, channel 1 is
set.

(3) target How to send the filtered content. Set to realtime.

(4) key Advanced filter settings. Use rate to set the sampling pe-
riod.

(5) | value Advanced filter settings. In this example, the sampling

period is set to 1000 milliseconds (1 second). Therefore,
this edge sends one piece of data per second.

(6) |my_id The UUID of the sending edge (this edge).
(7) my_secret Client secret for the sending edge (this edge). Reference:
(p. 11).

(8) | type Sending client type, realtime.

(9) | protocol Communication protocol of the sending client. Specify
mod_websocket.v2, as the Realtime and Bulk clients use the
Realtime API.

(10) | type Sending client type, bulk.

(11) store_cycle Sending interval for the Bulk client. Set this to 0 to dele-
gate data transmission to the Resend client.

(12) | type Sending client type, resend.

(13) | protocol Communication protocol of the sending client. In this ex-
ample, the Resend client uses the REST API, so specify
mod_http.

(14) | channel The channel to be used for the acquired data. In this ex-

ample, this Device Connector (logger) is channel 1.

3.4.2 Setting example to send some data in real time and send other data later
If network bandwidth is tight, you can configure the Realtime client to send only small or infre-
guent data and the rest of the data to be sent by the Resend client when the bandwidth is restored.

Setting example for sending data other than channel 1 with the Realtime client and delegate the
channel 1 data to the Resend client

{
"manager”: {
"filters": [
{
"name”: "channel”, # (1)
"channel”: "1", # (2)
"target”: "realtime”, # (3)
"setting": L[] # (4)
}
]v
}!
"clients”: [
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (5)
"my_secret”: "SEh9ZHPoKX8QYU-VONOE@ZPzXGBF. iuinenenn.. iBn5fn_eFM", # (6)
"type"”: "realtime”, # (7)

(continues on next page)

2 5 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

(continued from previous page)

"protocol”: "mod_websocket.v2", # (8)
}!
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (5)
"my_secret”: "SEh9ZHPoKX8QYU-VONOe@ZPzXGBF...........c.uuuuinenenon.. iBn5fn_eFM", # (6)
"type": "bulk”, # (9)
"protocol”: "mod_websocket.v2", # (8)
"store_cycle"”: @, # (10)
}l
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (5)
"my_secret”: "sSEh9ZHPoKX8QYU-VONOe@ZPzXGBF.............coouuinenenon.. iBn5fn_eFM", # (6)
"type": "resend”, # (11)
"protocol”: "mod_http”, # (12)
}
]’
"loggers": [
{
"connections”: [{
"channel”: 1, # (13)
}]'
}!
{
"connections”: [{
"channel”: 2, # (14)
}]'
}
]!

2 6 Rev. 1cc92fc

Num- Field
ber
(M) name
(2) channel
(3) target
(4) setting
(5) 'my_id
(6) | my_secret
(7) | type
(8) protocol
(9) type
(10) ' store_cycle
(11) type

12) | protocol
(13) ' channel
(14) ' channel

intdash Edge Agent Developer Guide
03 Change settings

Description

The type of filter, channel.

The channel to be filtered. In this example, it is channel

1.

How to send the filtered content. Set to realtime.

Advanced filter settings. Leave the settings empty.

The UUID of the sending edge (this edge).

Client secret for the sending edge (this edge). Reference:
(p. 11).

Sending client type, realtime.

Communication protocol of the sending client. Specify

mod_websocket.v2, as the Realtime and Bulk clients use the

Realtime API.

Sending client type, bulk.

Sending interval of the Bulk client. Set this to 0 to dele-

gate data transmission to the Resend client.

Sending client type, resend.

Communication protocol of the sending client. In this ex-

ample, the Resend client uses the REST API, so specify

mod_http.

Channel to be assigned to the acquired data. In this ex-

ample, the first Device Connector (logger) is channel 1.

Channel to be assigned to the acquired data. In this ex-

ample, the second Device Connector (logger) is channel

2.

3.4.3 Setting example to save all data as RAW data without sending

If there is no network connection or the bandwidth is too narrow to send data, you can give up
sending data to the intdash server and dump all the data to your local storage. The data dumped
to the local storage will need to be manually uploaded to the intdash server later.

Setting example not to send data to the server

{

"manager”: {

}!
"clients”: [1,
"loggers": [

{

"connections”:

"channel”:

1,

3

"connections”:

"channel”:

1,

(1)

(2

(3)

(continues on next page)

2 7 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

(continued from previous page)

]!
}

Num- Field Description

ber

(1) clients Client settings. Leave the sending client settings empty.
(2) channel Channel to be assigned to the acquired data. In this ex-

ample, the first Device Connector (logger) is channel 1.

(3) | channel Channel to be assigned to the acquired data. In this ex-

ample, the second Device Connector (logger) is channel

2.

3.4.4 Setting example to store all data for Resend client

If the network is unstable and the bandwidth fluctuates greatly, you can give up the real-time
transmission, store all the data, and send with the Resend client in one batch when the bandwidth
is restored. This retransmission process by the Resend client is automatic and you do not need to

manually upload the data to the intdash server.

Setting example to delegate the data of all channels to the Resend client without sending in real

time
{
"manager”: {
"filters”: [
{
"name”: "channel”,
"channel”: "-1",
"target”: "realtime”,
"setting”: []
}
1,
},
"clients”: [
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2",
"my_secret”: "SEh9ZHPoKX8QYU-VONoe@ZPzXGBF..............coovviiinon..
"type”: "realtime”,
"protocol”: "mod_websocket.v2",
},
{
"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2",
"my_secret”: "SEh9ZHPoKX8QYU-v@ONoe@ZPzXGBF...........c.ovuunn..
"type": "bulk"”,
"protocol”: "mod_websocket.v2",
"store_cycle": 0,
}
{

28

H R B R

("
2
(€©))
(€Y

(%)

(7
®

(%)

9
®
(10)

iBn5fn_eFM", # (6)

iBn5fn_eFM", # (6)

(continues on next page)

Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

(continued from previous page)

"my_id": "f90f2b42-66a5-4a57-8e99-468c36ebb6f2", # (5)
"my_secret”: "SEh9ZHPoKX8QYU-VONOE@ZPZXGBF.c.iuininenunn.. iBn5fn_eFM", # (6)
"type": "resend”, # (11)
"protocol”: "mod_http”, # (12)
}
]!
"loggers”: [
{
"connections”": [{
"channel”: 1, # (13)
1,
},
"connections”": [{
"channel”: 2, # (14)
1,
}
1,
Num- Field Description
ber

(m name
(2) channel

(3) target
(4) setting
(5) my_id

(6) my_secret
(7) | type

(8) | protocol
(9) type

(10) | store_cycle
(11) type

(12) | protocol
(13) channel

(14) | channel

The type of filter, channel.

The channel to be filtered. Set to "-1" which means that
all channels are filtered.

How to send the filtered content. Set to realtime.
Advanced filter settings. Leave the settings empty.

The UUID of the sending edge (this edge).

Client secret for the sending edge (this edge). Reference:
Edge information setting (p. 11).

Sending client type, realtime.

Communication protocol of the sending client. Specify
mod_websocket.v2, as the Realtime and Bulk clients use the
Realtime API.

Sending client type, bulk.

Sending interval of the Bulk client. Set this to 0 to dele-
gate data transmission to the Resend client.

Sending client type, resend.

Communication protocol of the sending client. In this ex-
ample, the Resend client uses the REST API, so specify
mod_http.

The channel to be used for the acquired data. In this ex-
ample, this Device Connector (logger) is channel 1.
Channel to be assigned to the acquired data. In this ex-
ample, this Device Connector (logger) is channel 2.

29 Rev. 1cc92fc

intdash Edge Agent Developer Guide
03 Change settings

3.5 Settings related to saving RAW data

For more information on RAW data, see (p. 42).

The following settings can be made for RAW data.

3.5.1 Preventing any data from being saved as RAW data

To prevent any data from being saved as RAW data, set manager.rawdir to null.

Example (No RAW data saved):

{

"manager”: {
"rawdir”: null,

}!

3.5.2 Preventing the storage of RAW data for a specific channel

Add loggers[].connections[].disable_raw to the Device Connector settings and set the value to 1.

Example (Disabling RAW data storage for channel 0):
{
"loggers": [{

"connections”: [{

"disable_raw": 1,
"channel”: o,

1,

1,

3 O Rev. 1cc92fc

intdash Edge Agent Developer Guide
04 Add your own Device Connector

04 Add your own Device Connector

By developing a Device Connector that reads data from a device and passes it to the Agent, you
can send the data retrieved from any device to the intdash server. The transfer of data between
the Device Connector and the Agent is done using FIFO.

4.1 Configure to use your own Device Connector

The Agent and the Device Connector are connected by a FIFO. When data from the device is sent to
the Agent, the Device Connector writes the data to the FIFO in a given format and the Agent reads
it. Conversely, when the Agent sends data to the device, the Agent writes the data to the FIFO in a
given format and the Device Connector reads it.

The FIFO is provided by the plug-in. To add the FIFO plug-in, add the following items to the con-
figuration file. If you start the Agent with the FIFO plug-in added, a FIFO file for communication
between the Device Connector and the plug-in will be generated.

Note: However, the Device Connector intdash-edge-logger provided by Aptpod does not use the
FIFO plugin. Therefore, when using intdash-edge-logger, it is not necessary to include plugin in
the configuration file.

Example (Adding a FIFO for channel 2):

{
loggers: [{
"connections”": [{
"channel”: 2,
"fifo_tx": "/var/run/intdash/logger_002.tx",
"fifo_rx": "/var/run/intdash/logger_002.rx"
1,
"details”: {
"plugin”: "fifo"
3
1,
}

Note: The "logger" in the configuration file refers to the Device Connector.

When you start the Agent with this setting, two FIFO files /var/run/intdash/logger_002.tx and /var/
run/intdash/logger_002.rx are created for communication between the Agent and the Device Con-
nector. The Device Connector must write data to /var/run/intdash/logger_002.tx when sending data
to the Agent. The Device Connector must read data from /var/run/intdash/logger_002.rx when re-
ceiving data from the Agent.

Note: When the Agent sends data to the intdash server, the channel set in the configuration file
is used as the channel number.

3 1 Rev. 1cc92fc

intdash Edge Agent Developer Guide
04 Add your own Device Connector

4.2 Write to FIFO from Device Connector

To send data from the Device Connector to the Agent, the Device Connector needs to write the
data to the FIFO generated by the Agent.

4.2.1 Writing data

The data to be written to the FIFO must follow a pre-defined format. Check FIFO data format used
between Agent and Device Connector (p. 46) for the format.

4.3 Read data from FIFO

To set up downstream, you need to add a Control client to the clients section of the configuration
file. The data that the Device Connector can read from the FIFO is the data on the channels that are
configured for downstream in the Control client and that are configured for the Device Connector.

Example (Device Connector settings):

{
loggers: [{
"connections”": [{
"channel”: 2,
"channel_rx": -1,
"receive_basetime”: true,
"fifo_tx": "/var/run/intdash/logger_002.tx",
"fifo_rx": "/var/run/intdash/logger_002.rx"
1,
"details": {
"plugin”:"fifo”
}
1,
}

The format of data to be read from the FIFO is the same as the format for writing (FIFO data format
used between Agent and Device Connector (p. 46)).

The data received by one Device Connector is limited to the data on one channel. If channel_rx
does not exist or -1 is set, the channel number set in channel will be received. If channel_rx is set to
a value between 0 and 255, the channel number set in channel_rx will be received.

Whenever a downstream connection is made to the intdash server (including a reconnection), the
base time is received. If the Device Connector does not want to receive the base time data, specify
false for receive_basetime.

Example (Settings for Control client):

{

"clients": [{

"my_id"”: "c35618bf-aa2c-4abc-8a4e-5b157b90cef”,

"my_secret”: "hsNxJhvDNHR2QcXbX1............., ZORWKVTPs_neAkjTNSO5",
"down_dst_id": "00000000-0000-0000-0000-000000000000" ,

"ctlr_id": "9defc535-4640-4c5e-934a-bb435a89a64f",

"ctlr_flts”: L

{
(continues on next page)

3 2 Rev. 1cc92fc

intdash Edge Agent Developer Guide
04 Add your own Device Connector

(continued from previous page)
"channel”: 2,
"dtype": 10,
"ids": ["string_a", "string_b"]

"channel”: 3,
"dtype": 14,
"ids": ["data_a"”, "data_b"]
}
1,

"type": "control”,
n,
}
In this Control client configuration example, the following two types of data sent from the edge

UUID 9defc535-4640-4c5e-934a-bb435a89a64f are received via the downstream.

« Channel number: 2, iSCP data type: String (10), data ID: "string_a" or "string_b"
« Channel number: 3, iSCP data type: Bytes (14), data ID: "data_a" or "data_b"

When the Device Connector and Control client are configured as above, the Device Connector
receives the data sent from the edge UUID 9defc535-4640-4c5e-934a-bb435a89a64f, channel number:
2, iSCP data type: String (10), data ID: "string_a" or "string_b". Since only channel 2 is specified in
the Device Connector settings, data with channel number 3 cannot be received.

4.4 Automatic startup and termination of Device Connectors

The Device Connector can be started and shut down at any time. If you want the Device Connector
to start and end together with the Agent, you can do it in the following ways.

4.4.1 Automatically start the Device Connector when the Agent starts

You can configure the Device Connector to start when the Agent starts.

Specify the Device Connector startup command in path of the configuration file, and specify the
Device Connector configuration file in conf. With this setting, when the Agent starts, the command
to start the Device Connector is executed in the form of path -C conf.
"loggers": [{

"path”: "/opt/vm2m/sbin/test-logger",

"conf": "/etc/opt/intdash/test-logger.conf”,

"connections”: [{
"channel”: 3,

1,

H

3 3 Rev. 1cc92fc

intdash Edge Agent Developer Guide
04 Add your own Device Connector

4.4.2 Terminate the Device Connector with a signal from the Agent

When exiting the Agent, the Agent sends a SIGTERM to the Device Connector. Make sure that your
Device Connector detects the signal and performs the termination process.

34 Rev. 1cc92fc

intdash Edge Agent Developer Guide
05 Contact Us

05 Contact Us

If you have any questions or problems, please contact us using the contact information below.
aptpod, Inc.

« Email address (customer support) VM2M-support@aptpod.co.jp
« Website https://www.aptpod.co.jp/en/

When making inquiries, please let us know the following.

- intdash Edge version
« All config files you are using
- Manager configuration file (manager.conf) (Please delete the tokens contained in the file
before sending.)
 Device connector configuration files (e.g. logger.conf.xxx)

3 5 Rev. 1cc92fc

mailto:VM2M-support@aptpod.co.jp
https://www.aptpod.co.jp/en/

intdash Edge Agent Developer Guide
06 Appendix

Appendix

6.1 Base time

The base time is information that represents the start time of measurement. The Agent gets the
base time as needed and sends it to intdash.

Note: "Measurement" refers to a collection of time series data sent from a particular edge. For
details, refer to the separate document on iSCP v1.

There are two types of base times.

Base time by EdgeRTC
The real-time clock (RTC) base time of the system running the Agent.

Base time by NTP
The base time by the clock synchronized with the NTP server. The Status plugin must be
enabled to use the NTP base time (The Status plugin is enabled in the default configuration

file).

Base time type Timing to determine the base Timingto send the base time to
time intdash

EdgeRTC When the Agent starts At the start of data transmis-

sion

NTP After the Status plugin has | Fixed cycle (1-minute interval
communicated with the NTP for 10 minutes after startup,
server then 10-minute interval)

6.2 Filter at the sender's side

The time series data collected by the manager through the Device Connector is filtered by the
manager and distributed to each client such as the Realtime client and the Bulk client, and sent to
the intdash server.

Filters give you the flexibility to switch between data transmission methods.

6.2.1 Filtering process on the sending side

For each time series data, the manager decides whether to send the data using each client (pass)
or not (drop).

« Unless otherwise specified, time series data is sent to the intdash server via the Realtime
client.

- Data that was not sent by the Realtime client because it was "dropped" by the filter for the
Realtime client is sent by the Bulk client.

- Data thatis "dropped" by the filter for the Bulk client will not be sent to the intdash server.

In either case, the time series data is dumped as RAW data by the manager.

3 6 Rev. 1cc92fc

Realtime client
Passed

Dropped

Dropped

6.2.2 Filter configuration

Bulk client

Passed

Dropped

How the data is handled
Data is sent in real time to the intdash server and saved
on the intdash server.
Datais sent to the intdash server by batch transmission at
regular intervals and saved on the intdash server.

Data is not sent to the intdash server in real time. It is
not saved on the intdash server. It is saved as RAW data
(p. 42) in the local storage on the edge device.

intdash Edge Agent Developer Guide

06 Appendix

Filtering is performed by multiple filters. Multiple filters are evaluated sequentially to determine
which client should send each time series data.

For example, if the following filter configuration has been set up, data is sent as follows.

Filter Filter Filter Filter Filter
target target target target target
=realtime =guaranteed =realtime =guaranteed =guaranteed

IR zl;:rl;:ime For Bulk client e 'I:%Ilia:rlkime For Bulk client For Bulk client

passed passed

Data X O O

dropped
DataY -

passed

dropped

Data Z -—"
pas;ed dropped
O o - -
RAW data

- Data X does not correspond to any filter and is sent by the Realtime client.

Realtime client

Bulk client

- Data Y is dropped by the Realtime client by the first filter and is sent by the Bulk client.
- Data Z is not sent because the first filter drops it from the Realtime client and the fourth filter
also drops it from the Bulk client.

37

Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix
6.2.3 Common filter settings

The settings for the filter are made in manager.filters[] of the configuration file. The contents of
the objects stored in the "filters" array should be as follows.

Key Type Description

name string See the table for each filter in (p. 38).

channel string Set the channel to which the filter is applied. You can set "-1",
"0"to "255". In case of "-1", all channels are targeted.

target string Sets the client to which the filter is applied. (realtime|guaran-
teed|both)

setting object[] Filter setting. See the description of each filter in
(p- 38).

For target, specify one of the following.

» realtime: Filter for the Realtime client.
* guaranteed: Filter for the Bulk client.
 both: Filter for both the Realtime client and the Bulk client.

6.2.4 Filter type

There are the following types of filters.

Some filters apply only to data of a specific data type, while others apply to all data types.

Filter name Data types to which Description
you can apply filters
(p.38) | CAN, NMEA, Motion | Sampling filter. Thins out the data.
JPEG, String, Float, Int,

Bytes only
(p. 40) CAN only Allow-list type CAN ID filter. Passes the data
with the specified CAN ID.
(p. 40) | CAN only Block-list type CAN ID filter. Drops the data with
the specified CAN ID.
(p.41) |Any Block-list type channel filter. Drops the data for
the specified channel.
(p.41) Any Data replication filter. Duplicate the same data

to the Realtime and Bulk clients.

sampling filter
When a sampling filter is set for a channel, data is extracted so that there is one data point for each
data ID within the time range specified as the sampling interval.

In each sampling interval, data points are processed as follows.

« The first data point of each data ID will pass.
« The second and subsequent data points with the same data ID will be discarded.
- Ifthere is no distinction by data ID, as in Motion)PEG, the first data point will pass.

The following figure shows how CAN data with three different frequencies (ID 1, 2, and 3) are
filtered by a sampling filter. In each sampling interval, the first data point of the data with ID 1
passes the filter. Similarly, in each sampling interval, the first data point with ID 2 and the first data
point with ID 3 pass the filter.

3 8 Rev. 1cc92fc

intdash Edge Agent Developer Guide

06 Appendix

CANID:1
<= Sampling interval <= Sampling interval =P
Input
v v
Output
CANID: 2
<= Sampling interval <= Sampling interval P
Input
v v
Output
CANID: 3
<= Sampling interval <= Sampling interval >
Input
v
Output

Contents of the "setting" object of the sampling filter

Key
rate

Value

Sampling interval [msec]

Example (Sampling real-time data of channel 1 with a sampling interval of 1000 [msec]):

"manager”: {
"filters": [{
"name”: "sampling”,
"channel”: "1",
"target”: "realtime”,
"setting”: [{"key"”: "rate"”, "value":
1
}!
}

"1000"}]

39

Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

can_id filter
An allow-list type filter that passes data with a specific CAN ID and drops other data.

+ Passes only the data with the specified CAN ID.
« Multiple CAN IDs can be set.
» Drops data that does not have a specified CAN ID
« When setting the extended CAN ID, enter a number with the first bit set to 1, such as
0x80000000.

Contents of "setting" object of can_id filter

Key Value
id CAN ID to pass

Example (Only CAN IDs 0x00000010 and 0x00000020 in Realtime channel 2 pass):

{

"manager”: {

"filters": [{
"name”: "can_id",
"channel”: "2",
"target”: "realtime”,
"setting”: [
{"key": "id", "value": "16"},
{"key": "id", "value": "32"}
]
1
},

can_mask filter
A block list type filter that drops data of a specific CAN ID.

- Drops the data with the specified CAN ID.
« Multiple CAN IDs can be set.
« Passes data that does not have a specified CAN ID
« When setting the extended CAN ID, enter a number with the first bit set to 1, such as
0x80000000.

Contents of the filter "setting" object

Key Value
id CAN ID to be dropped

Example (Data with extended CAN ID 0x00000010 in Bulk channel 1 are dropped):

{

"manager”: {

"filters": [{
"name”: "can_mask",
"channel”: "1",
"target"”: "guaranteed”,
"setting”: [
(continues on next page)

40 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

(continued from previous page)
{"key": "id", "value"”: "2147483664"}
]
11
},

2147483664 is a decimal notation with the first bit of 0x00000010 set to 1.

channel filter
A block list type filter that drops a specific channel.

- Drops the data of the specified channel
Contents of the filter "setting" object
* None

Example (Data in Realtime channel 1 are dropped):

{

"manager”: {

"filters": [{
"name”: "channel”,
"channel”: "1",
"target”: "realtime”,
"setting”: []
1
},

duplicate filter
Duplicate the data.

 Duplicate the data and send the same data to the Realtime and Bulk clients
Contents of the filter "setting" object
* None

Example (copy Realtime channel 1 data and send it to the Bulk client):

{

"manager”: {

"filters": [{
"name”: "channel”,
"channel”: "1",
"target”: "realtime”,
"setting”: []
}H
},

41 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

6.3 RAW data

All the data input to the Agent from the Device Connectors can be saved as RAW data in the dump
file.

6.3.1 Saving and automatic deletion of RAW data

It is possible to set whether to save RAW data. By default, the data is saved.

To prevent your disk from filling up by storing your RAW data, you can automatically delete your
RAW data.

{
"manager”: {
"rawdir”: "/var/lib/intdash/raw”,
"raw_autodelete”: true,
"raw_autodelete_th": 85,
}’
}

If raw_autodelete is set to true, the RAW data will be automatically deleted when the usage of the
partition storing the RAW data reaches a certain level. The auto-delete feature deletes older RAW
data first, until the partition containing rawdir uses less than raw_autodelete_th of disk space.

6.3.2 Destination and file structure of the RAW data

Adirectory for each measurement is created in the RAW data storage directory, and the dump files
are saved in that directory.

+ /opt/vm2m/var/lib/intdash

+ raw
+ 1562549837.123456789 # (1)
- 001_000.raw # (2)
- 002_000.raw # (3)
+ 1562549837.999999999
- 001_000.raw
- 001_001.raw

Number Description

(1) Measurement directory
(2) Dump of data from channel 1 Device Connector
(3) Dump of data from channel 2 Device Connector

42 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

Measurement directory

A new measurement directory is created for each measurement. The directory name is the Edge
RTC base time of the measurement in Unix time down to nanoseconds. (Example: The directory
name 1562549837.123456789 means the base time 2019-07-08T01:37:17.123456789 UTC.)

Dump file
A dump file is created for each Device Connector. The format of the file name is as follows:
XXX_NNN. raw

« XXX: Device connector channel number (decimal number: 000-255)
« NNN: Counter number (decimal number: 000-999)

If the size of the dump file is 512MB or more, a new file will be created with the next counter
number.

Dump file format

The dump file is a direct dump of data in FIFO data format used between Agent and Device Con-
nector (p. 46).

Sample (NMEA)

@ 1 4] 12 13 14 18

e T $---- - - ---- N T T et T e et T T +---f -+
Datal | Type | Length | Time Sec | Time MNano |DType |Seqho NMMEA Size | NMEA String

$------ e T e e et T et T +---f -+
Data2 | Type | Length | Time Sec | Time Nano |DType |SeqNo | NMMEA Size | NMEA String

e T $---- - - ---- N T T et T e et T T +---f -+
Data3d | Type | Length | Time Sec | Time MNano |DType |SeqNo NMMEA Size | NMEA Sfring

e T $---- - - ---- N T T et T e et T T +---f -+
Datad | Type | Length | Time Sec | Time MNano |DType |Seqho NMMEA Size | NMEA String

$------ e T e e et T et T +---f -+

6.3.3 Tool for analyzing RAW data

Tools for analyzing RAW data are installed with the Agent.

Usage example:

/opt/vm2m/bin/rawutil -P hexdump /opt/vm2m/var/lib/intdash/raw/1562551394.826226991/000_000.raw

timestamp datatype size value
9.099532866 16 72 80: 24 47 42 52 4d 43 2c 30 32 38 33 31 34 2e 38 30 2c 41
0.104995269 16 39 00: 24 47 4e 56 54 47 2c 2c 54 2c 2c 4d 2c 36 2e 34 32 3
8.118923030 16 82 B@: 24 47 4e 47 47 41 2c 30 32 30 33 31 34 2e 38 30 2c 33 ..
©.128784514 16 62 00: 24 47 42 47 53 41 2c 41 2c 33 2c 31 38 2c 3@ 31 2c 3N

For more information on how to use the tool, see the rawutil help.

/opt/vm2m/bin/rawutil -h

4 3 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

6.4 Retransmission data

Data that is tried to be sent by a Realtime or Bulk client but fails is retained as retransmission data.
The time-series data held as retransmission data is sequentially retransmitted by the Resend client.

6.4.1 Automatic stop when disk space is low

If the disk usage exceeds the threshold, the Agent stops automatically. The conditions are as fol-
lows ("[]" represents the key in the configuration file.):

* [manager.required_space] < Usage of the partition where retransmission data is stored (%)
* [manager.required_space_raw] < Usage of the partition containing [manager.rawdir] (%)
6.4.2 Save destination and file structure

A measurement directory is created under the retransmission data directory, and the retransmis-
sion section file is saved in it.

+ /opt/vm2m/var/lib/intdash

+ meas
+ <SERVER_NAME> # (1)
+ CCCCCCCCC_TTTTTTTTTT . NNNNNNNNN # (2)
- .meas.<MEAS_UUID> # (3)
- .meta # (4)

- SSSSSSSSSS_TTTTTTTTTT.NNNNNNNNNF.EXT # (5)
~ SSSSSSSSSS_TTTTTTTTTT . NNNNNNNNNF . EXT

+ <SERVER_NAME>

+ CCCCCCCCC_TTTTTTTTTT . NNNNNNNNN

- .meas.<MEAS_UUID>
- .meta
~ SSSSSSSSSS_TTTTTTTTTT . NNNNNNNNNF . EXT
~ SSSSSSSSSS_TTTTTTTTTT . NNNNNNNNNF . EXT

Number Description

(1) Server directory

(2) Measurement directory
(3) UUID of measurement
(4) Measurement metadata
(5) Retransmission section

Server directory

The server directory stores the measurement data to be sent to this server. The directory name is
the name of the server.

44 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

Measurement directory

A new measurement directory is created for each measurement. The format of the directory name
is as follows:

CCCCCCCCC_TTTTTTTTTT . NNNNNNNNN

« ccceeceecc: Number of measurements
« TTTTTTTTTT.NNNNNNNNN: EdgeRTC base time of the measurement (Unix timestamp down to
nanoseconds)

Measurement UUID file

The measurement UUID file is an empty file that has the measurement UUID in the filename. This
file is created to make it easier for users to find measurements. The file name is .meas.<first 8
digits of measurement UUID>.

Measurement metadata file
The following information about measurement is stored in the measurement metadata file.

« Serial number (Serial number of the last section)

 Unit count (Total number of units)

« Number of retransmission section files

« Retransmission file size (Total retransmission file size)

« Measurement UUID flag (Indicates whether the measurement UUID was obtained)

- End flag (Indicates whether the edge notified the server that the measurement is finished.)
« Measurement tag flag (Indicates whether the measurement tag was sent to the server)

« Measurement count (Counter number given to the measurements created in this terminal)
+ EdgeRTC base time

« Measurement duration

The file name is .meta.

Retransmission section file
A retransmission section file is a file that dumps only the units in a particular intdash Section.

The file name format is $5555SSSSS_TTTTTTTTTT. NNNNNNNNNF . EXT.

« S: Section serial number

T: Relative time (seconds) from EdgeRTC

« N: Relative time from Edge RTC (nanoseconds)

F: Flag (B: Includes base time, None: The base time is not included.)

EXT: Extension (bin: retransmission data, store: data for the Bulk client, store.bin: retrans-
mission data from the Bulk client)

Example:

0000000000_0000000013.517448529B.bin
0000000001_0000000014.002924135.bin
0000000002_0000000015.000175599 . store
0000000003_0000000016.002819513.store.bin

45 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

6.5 FIFO data format used between Agent and Device Connector

The data format for the Agent FIFO consists of a common header part and a data-type specific part.

« See Common header (p. 46) for the common header part.
- See Data type-specific part (p. 47) for the specific parts of each data type.

The following is an example of the primitive string type "Hello".

Example:
Common header part Data type specific part (String)
- Type: 1 (fixed) -1d Length: 2
- Length: 18 (Data size after Time Sec, including Time Sec) (ID "ab" is 2 bytes in UTF-8)
- Timestamp: 1234.123456789 (seconds) -1D: "ab"
- DataType: 0x1D (String) - Data: "Hello"
-SeqNo: 0

hex |01 (12| 00| 00| d2|04|00|00|15|cd|5b|07|1d|00|02|61)|62|48|65| 6¢c| 6C| 6f

' L

T ' T]
' Time Nano Data

Type Length
1 18 I 123456789 | IdLength ID "Hello”
(Little endian) I (Little endian) / I 2 "ab”
Time Sec SeqNo (UTF-8)
1234 0
(Little endian) DataType

0x1D (String)

Important: The data format and the data type used by the FIFO between the Agent and the
Device Connector is different from those of iSCP v1.

6.5.1 Common header

(%] 1 2 3

0123456789012345678901234561789¢01
Fom e Fom e e e +
| Type | Length |
Fom e o Fmmm e e +
| Time Sec |
Fomm e Fom e e o m e +
| Time Nano |
Fmm e Fmm e o o +
| DataType | SegNo | Data |
o o e F————————— //-—-+

46 Rev. 1cc92fc

intdash Edge Agent Developer Guide

Field name Byte length Endian Signed Value

Type 1 — No 1

Length 3 LE No 10-16777216
Time Sec 4 LE No 0-4294967295
Time Nano 4 LE No 0-999999999
DataType 1 — No —

SegNo 1 — No 0-255

Data 0-16777208 — - —

Data types

« Status (data type: 0x03) (p. 47)

« NMEA (data type: 0x10) (p. 48)

o CAN / CAN-FD (data type: 0x11) (p. 48)

« JPEG (data type: 0x12) (p. 48)

« H.264 (data type: Ox1C) (p. 49)

« String (Data type: 0x1D) Primitive string type (p. 49)

« Float (data type: OxO1E) Primitive Float64 type (p. 50)
* Int (data type: Ox1F) Primitive Int64 type (p. 50)

« Bytes (data type: 0x20) Primitive byte array type (p. 50)
« PCM (data type: 0x22) (p. 51)

» Generic (data type: Ox7F) (p. 51)

6.5.2 Data type-specific part

Status (data type: 0x03)

0 1 2 3

©12345678901234567890123456738901
Fmm e o o o +
| StatusId | Reserved | Size |
Fmm e o e o +
| Data |
o Fm e e —————— //--+

06 Appendix
Description
Message type (fixed

at1)

Size after Time Sec
(including Time Sec)
Monotonically in-
creasing system
time (seconds)’
Monotonically in-
creasing system
time (nanoseconds)
FIFO data type codes
(see data type table
below)

Sequential number
(can be fixed at
zero.)

Data (see section for
each FIFO data type)

" In programming languages that can use POSIX, you can get this data by specifying CLOCK_MONOTONIC_RAW in clock_get-

time() function.

47

Rev. 1cc92fc

intdash Edge Agent Developer Guide

06 Appendix
Field name Byte length Endian Signed Value Description
Statusld 1 — No 0x90 Status type (fixed at
0x90)
Size 2 LE No 0-32767 Data size
Data 0-32767 — - — JSON string
NMEA (data type: 0x10)
) 1 2 3
©1234567890123456789012345678901
| Size |
| String |
Fomm e e tomm e e o e e o //=——*
Field name Byte length Endian Signed Value Description
Size 4 LE No 0-4294967295 Data size
Data 0-4294967295 | — — — NMEA string
CAN / CAN-FD (data type: 0x11)
) 1 2 3
©1234567890123456789012345678901
| ID I
| DLC | Data |
o — o e F————— //--+
Field name Byte length Endian Signed Value Description
ID 4 LE No 0-4294967295 | CAN ID (set the first
bitto 1 in the case of
extended CAN)
DLC 1 — No 0-255 Data size
Data 0-255 — — — data

JPEG (data type: 0x12)

) 1 2 3

©1234567890123456789012345678901

| JPEG I

T LT T e T e Fmm e //--+

Field name Byte length Endian Signed Value Description

JPEG 0-16777216 — — — JPEG (ISO / IEC
10918-1, Annex B)
binary data

48 Rev. 1cc92fc

intdash Edge Agent Developer Guide

06 Appendix
H.264 (data type: 0x1C)
) 1 3
©1234567890123456789012345678901
| NALType | NALUnits |
Fm—m o e F————— //-—+
Field name Byte length Endian Signed Value Description
NALType 1 — — — NALType (see NAL
Type below)
NALUnNits — — — — NALUnNits
NALType
NALType Data to be stored in NAL Units
0x00 Concatenation of NAL Units in
1 frame? which are IDR slices
(nal_unit_type ==5)3
0x01 Concatenation of NAL Units in 1
frame which are non-IDR slices
(nal_unit_type ==1)
0x08 Concatenation of NAL Units* re-
quired for H.264 decoding. It is
assumed that one is generated in
advance for each NALType 0x00.
String (Data type: 0x1D) Primitive string type
) 1 2 3
©1234567890123456789012345678901
o m o e e +
| ID Length | ID |
o o e F————————— //-—-+
| Data |
Fom o —————— e - //-—+
Field name Byte length Endian Signed Value Description
ID Length 1 — — 0-255 ID length
ID 0-255 — — 0-16777215 UTF-8 encoded ID
Data — — — — String

2 The sequence of NAL units of the same nal_unit_type 1-5 (Coded slice), starting from the unit where

first_mb_in_slice_header in slice_header is 0, ending with the unit before the next 0.

3 According to “Byte stream format (Annex B)” in “ITU-T Rec. H.264 | ISO/IEC 14496-10 Advanced Video Coding” ,
concatenate as follows: start code prefix + NAL unit + start code prefix + NAL unit ... start code prefix + NAL unit
4 The NAL units required for H.264 decoding are SPS (nal_unit_type == 7) and PPS (nal_unit_type == 8).

49

Rev. 1cc92fc

intdash Edge Agent Developer Guide

Float (data type: 0x01E) Primitive Float64 type

) 1 2 3
©1234567890123456789012345678901

| ID Length | ID |
o o e F————— //-—+

| Data |

I |

Fomm Fom e T e e e T e e e e e +

Field name Byte length Endian Signed Value

ID Length 1 — — 0-255

ID 0-255 — - 0-16777215
Data 8 LE — —

Int (data type: Ox1F) Primitive Int64 type

) 1 2 3
©1234567890123456789012345678901

| ID Length | ID |
o o e F————————— //-—-+

| Data |

I |

Field name Byte length Endian Signed Value

ID Length 1 — — 0-255

ID 0-255 — — 0-16777215
Data 8 LE Yes -

Bytes (data type: 0x20) Primitive byte array type

) 1 2 3
©1234567890123456789012345678901
Fom e Fom e e e +
| ID Length | ID |
e e LT T e LT e Fommm———————— //--+
| Data |
Fomm e e e T e Fmmm //--+
Field name Byte length Endian Signed Value
ID Length 1 — — 0-255
ID 0-255 — — 0-16777215
Data — — — —

50

06 Appendix

Description

ID length

UTF-8 encoded ID
Byte string contain-
ing double-precision
floating point num-
ber (based on IEEE
754)

Description

ID length

UTF-8 encoded ID
Int64

Description

ID length

UTF-8 encoded ID
Binary data

Rev. 1cc92fc

PCM (data type: 0x22)

intdash Edge Agent Developer Guide

) 1 2 3
012345678901234567890123456789801

| FormatID | Channels |

| SampleRate |

| BitsPerSample | Data |

Fomm Fom e T e e e o m //--+

Field name Byte length Endian Signed Value
FormatID 2 LE No 0-65535
Channels 2 LE No 0-65535
SampleRate 4 LE No 0-4294967295
BitsPerSam- |2 LE No 0-65535

ple

Data — — — —

Generic (data type: 0x7F)

0 1 2 3
012345678901234567890123456789801

Fom e Fem e e e +

| ID |

Fom e Fom e e e +

| Data |

Fomm e T e T e Fommm———————— //--+

Field name Byte length Endian Signed Value

ID 4 LE No 0-4294967295
Data 0-65531 — — —

> WAVE (RIFF waveform Audio Format), a container format for audio data

51

06 Appendix

Description

Format ID defined in
WAVE™®

Number of audio
channels stored
Sampling frequency
[Hz]

Bit rate [bit/sample]

Waveform informa-
tion conforming to
WAVE

Description
Numeric ID
Arbitrary data

Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

6.6 All settings for Agent

This section describes all items in the Agent configuration file.

The configuration file has the following structure. Refer to the following sections for details.

Note: The "logger" in the configuration file refers to the Device Connector.

Key Type Description

manager object Manager settings (p. 53)

clients object[] Client settings (p. 54)

loggers object[] Device connector settings (p. 57)
Example
{

"manager”: {

},
"clients”: [{

1,
"loggers": [{

3
3

6.6.1 Replacing settings with environment variables

The string type setting values in the configuration file can be given by the environment variables.
By giving the settings in the environment variables, you can flexibly change the settings at startup
without rewriting the configuration file.

For example, to give a value to clients.my_secret Using an environment variable, use the variable
in the configuration file as follows. In the example below, the variable $SECRET is used.

{
"clients”: [
{
"my_secret”: "$SECRET",
1,
}

Then, set the environment variable with a prefix INTDASH_EDGE_ added to the above variable name.
In this example, set a variable INTDASH_EDGE_SECRET.

When intdash-edge-manager is started using this configuration file, $SECRET in the configuration
file will be expanded to the value of the environment variable INTDASH_EDGE_SECRET.

Note: Only string-type values can be replaced by environment variables.

5 2 Rev. 1cc92fc

6.6.2 Manager settings

intdash Edge Agent Developer Guide

06 Appendix

Settings related to the manager are set in the manager field of the configuration file as an object.

The items are as follows.

Key

workdirs

basetime

meas_root
rawdir

raw_autodelete

raw_autodelete_th

required_space

required_space_raw

stat

process_stat

wwan_stat

Type
string[]

string

string
string
bool
number

number

number

string

string

string

Default value
["/opt/vm2m/var/

lib/intdash/meas”,

"/opt/vm2m/var/
run/intdash”]
"/opt/vm2m/var/
run/intdash/
basetime”
"/opt/vm2m/var/
lib/intdash/meas”
"/opt/vm2m/var/
lib/intdash/raw”

true

85

90

90

"/opt/vm2m/var/
run/intdash/
manager.stat”
"/opt/vm2m/var/
run/intdash/
process.stat”
"/opt/vm2m/var/
run/intdash/wwan.
stat”

53

Description
Directory path to be created
at startup

Path of the file that stores
the base time information

Directory path to store the
retransmission data
Directory path to save RAW
data

Automatic deletion of RAW
data

Threshold for automatically
deleting RAW data [%]
Threshold at which the
Agent stops measurement
[%]. The measurement
is automatically stopped
when the free space ratio
of the partition that stores
the retransmission data
becomes larger than this
value. If you setitto 100, it
will not stop automatically.
Threshold at which the
Agent stops measurement
[%]. The measurement
is automatically stopped
when the free space ra-
tio of the partition that
stores RAW becomes larger
than this value. If you set
it to 100, it will not stop
automatically.

Path to the file that records
the status of the Manager

Path of the file that records
the status of the Process

Path of the file that records
the WWAN status

continues on next page

Rev. 1cc92fc

Key
logger_stat

system_stat

filters

6.6.3 Client settings

intdash Edge Agent Developer Guide

06 Appendix

Table 1 - continued from previous page

Type
string

string

object[]

Default value
"/opt/vm2m/var/
run/intdash/
logger_%@3hhu.
stat”

"/opt/vm2m/var/
run/intdash/
system.stat”

]

Description

Format of the file path to
record the status of the
Device Connector. The first
format specifier (%@3hhu in
the default value) is re-
placed with the channel
number.

Path to the file that records
the status of the System

Filter settings. See
(p. 36) for
more information.

The settings for clients are in the clients field of the configuration file as an array of objects. The

items are as follows.

Key
protocol

type

mode

my_id
my_secret

auth_path

my_token

dst_id

Type
string

string

number

string
string

string

string

string[]

Default value

nn

nn

nn

nn

"/opt/vm2m/var/
lib/intdash/.auth”

nn

]

54

Description
Name of communication li-
brary to use (mod_websocket.
v2|mod_http)
Operating mode of the
client (realtime|bulk|re-
send|control). If the pro-
tocol is mod_http, only
resend can be selected.
Whether to persist data to
the server (0: do not per-
sist, 1: persist). This setting
is only used if type is real-
time|bulk|resend and proto-
col is mod_websocket.v2
Edge UUID used to connect
to intdash
Client secret used to con-
nect to intdash
The path to the file where
the connection information
is saved. You must have
write access to this file.
Edge token used to connect
to intdash
UUID of the destination
edge. Used when "type"
is realtime|bulk|resend
(optional)

continues on next page

Rev. 1cc92fc

Key
down_dst_id

ctlr_id

ctlr_flts

ctlr_flts.channel

ctlr_flts.dtype

ctlr_flts.ids

unit_flush_cycle

resend_cycle

intdash Edge Agent Developer Guide

06 Appendix

Table 2 - continued from previous page

Type
string

string

object[]

number

number

number[] or
string[]

(Data IDs for CAN
and Generic are
numbers, so use
number[]; data
IDs for String,
Float, Int, and
Bytes are strings,
so use string[].)

number

number

Default value

nn

nn

]

]

1000

55

Description

Only data with the desti-
nation UUID specified here
will be received from the
server.

However, if
00000000-0000-0000-
0000-000000000000 iS Speci-
fied, data for any destina-
tion will be received.

If the specified string can-
not be parsed as a UUID (in-
cluding the default " case),
the UUID set in my_id is as-
sumed and only data for
my_id is received from the
server.

Used when "type" is "con-
trol".

UUID of the source edge.
Used when "type" is "con-
trol".

Filters to be applied to data
received from the server.
See ctlr_flts.channel,
ctir_flts.dtype, ctlr_flts.ids
for filter content.

Channel to receive data
from the server. Used
when "type" is "control".
iSCP data type code of data
to be received from the
server. Used when "type" is
"control".

Data ID of the data to be re-
ceived from the server (op-
tional). Used when "type" is
"control”.

In the case of CAN data,
if you set the value to an
empty array [1, data of any
ID will be received. For data
types other than CAN, set-
ting [1 will cause nothing to
be received.

Flush interval [msec]. Used
when "type" is "realtime".
Retransmission cycle
[msec]. Used when "type"
is "resend".

continues on next page

Rev. 1cc92fc

Key
store_flushtime
store_flushsize

store_cycle

http_client_count

connection.host

connection.path

connection.ssl

connection.port

connection.cert

connection.client_cert

connection.client_key

intdash Edge Agent Developer Guide

06 Appendix

Table 2 - continued from previous page

Type
number
number

number

number

string

string

string

number

string

string

string

Default value
3000

10000

1000

nn

u/n

"secure”

443

nn

cate installed
the 0S.)

nn

nn

56

(Use a certifi-

in

Description

Flush interval [msec]. Used
when "type" is "bulk".

Flush interval [number of
units]. Used when "type" is
"bulk".

Transmission interval
[msec]. Used when "type"
is "bulk".

Number of simultaneous

retransmissions. Used
when the protocol s
"mod_http".

The hostname + domain
name (FQDN) of theintdash
server used by the edge
(e.g., dummy.intdash. jp).
Please note that depending
on your environment, the
server name used by the
edge and the server name
used by the web applica-
tions may be different. In
the case of intdash environ-
ments operated by aptpod,
the server name for edges
is usually <xxxxx>.intdash. jp
and the server name for
web applications is <xxxxx>.
vm2m. jp (the <xxxxx> part is
the same).

Path to the server re-
source. (If the protocol is
mod_websocket*, US€ /api/
vl/ws/measurements. If the
protocol is mod_http, use
/api/v1/measurements.)
Security settings for SSL
connections (none|lax]|se-
cure).

The port of the intdash
server to which the edge
connects.

Server certificate file path
(optional).

Certificate when using a
client certificate (optional).
Private key when using a
client certificate (optional).

continues on next page

Rev. 1cc92fc

Key

user_agent

6.6.4 Device connector settings

intdash Edge Agent Developer Guide

06 Appendix

Table 2 - continued from previous page

Type
string

Default value
"IntDash-Edge/
unknown (Unknown;

Unknown)"

Description
User agent (optional).

The settings for Device Connectors are in the loggers field of the configuration file as an array of
objects. The items are as follows.

Key
path

conf

details.plugin

details.plugin_dir

details.plugin_arg

details.plugin_with_process

connections[].channel

connections[].channel_rx

connections[].
receive_basetime

connections[].fifo_tx

connections[].fifo_rx

Type
string

string

string

string

string

bool

number

number

bool

string

string

Default value

nn

nn

nn

"/opt/vm2m/1lib/
plugins”

{3

true

-1

-1 (If setto -1, the
same value as the
"channel" is used)

false

"/opt/vm2m/var/
run/intdash/
logger_%@3hhu. tx"

"/opt/vm2m/var/
run/intdash/
logger_%@3hhu.rx’

I

57

Description

Full path of the Device Con-
nector you want to start au-
tomatically.

String to be passed as the
second argument when the
Device Connector is started
automatically. The first ar-
gument is -C.

Name of the plugin to use
(fifo|status).

Directory where the exe-
cutable file of the plug-in is
stored.

JSON object for plugin set-
tings. Settings differ de-
pending on the plug-in.
Whether to start the Device
Connector automatically
when using the plug-in.
Channel (0-255) to set for
the Device Connector.
Channel used to send data
to the Device Connector
when using downstream
Whether base time data is
sent to the Device Con-
nector when using down-
stream.

FIFO file path used for com-
munication. The first for-
mat specifier (%3hhu in the
default value) is replaced
with the channel number.
FIFO file path used for com-
munication. The first for-
mat specifier (% @3hhu in the
default value) is replaced
with the channel number,

continues on next page

Rev. 1cc92fc

Key

connections[].disable_raw number 0

intdash Edge Agent Developer Guide
06 Appendix

Table 3 —continued from previous page

Type Default value Description
Whether to save the data
of this channel as RAW data
(0: save, non-zero: do not
save).

6.7 Agent logs

The Agent outputs log messages to the standard output.

By redirecting the standard output, log messages can be saved to a file. For example, if you start
the Agent as follows, log messages will be output to /var/run/intdash/intdash.log (${CONF_PATH} is
the full path of the configuration file.

/opt/vm2m/sbin/intdash-edge-manager -C ${CONF_PATH} >/var/run/intdash/intdash.log 2>&1

6.7.1 Log message format

Log messages are output in a format similar to the following example.

01/13
01/13
01/13
01/13
01/13
01/13
01/13
01/13

A

m

01
01
o1
01
01
o1
o1
01

:51
:51
:51
:51
:51
:51
:51
:51

:49 intdash-edge-manager(1532): INFO : procedure(): CREATED

:49 intdash-edge-manager(1532): INFO : start(): Manager thread STARTING
:49 intdash-edge-manager(1532): INFO : procedure(): STARTED

:49 intdash-edge-manager(1532): INFO : base_proc(): Manager thread STARTED

:49 intdash-edge-manager(1532): INFO : proc(): Basetime (RTC monotonic) : 58469.155277440
:49 intdash-edge-manager(1532): INFO : proc(): Basetime (RTC realtime) : 1610502709.225218700
:49 intdash-edge-manager(1532): INFO : start(): RawDataHandler thread STARTING
:49 intdash-edge-manager(1532): INFO : start(): DataSaver thread STARTING
©)) 3) (C))
Description

Date and time of occurrence

Module name (process number)

Prefix (INFo: information about normal operation, WARN: information about recoverable
errors, ERR: information about non-recoverable errors)

Function name and log content

6.7.2 Log messages about the Agent application

The main log messages related to the Agent application are as follows.

5 8 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

Creating a FIFO to connect to the device connector

INFO : procDataReader(): DeviceProcess create pipe : /opt/vm2m/var/run/intdash/logger_000.tx

The path in the log message is the path of the FIFO created by intdash-edge-manager.

Opening FIFO

INFO : procDataReader(): DeviceProcess open pipe : /opt/vm2m/var/run/intdash/logger_000.tx

The path in the log message is the path of the FIFO opened by intdash-edge-manager.

Closing FIFO

INFO : procDataReader(): close pipe:/opt/vm2m/var/run/intdash/logger_004.tx

The path in the log message is the path of the FIFO that was closed by intdash-edge-manager.

6.7.3 Log messages about real-time transmission via WebSocket

The following are the main log messages related to real-time transmission via WebSocket.

Establishing a connection with the server

INFO : callbackPacketEstablish(): REALTIME Upstream request succeed

Sending data of one section

This message indicates that the data of one section has been sent. At this point, processing on the
server side has not been completed.

INFO : callbackSndSectionEnd(): REALTIME 46 units and 1 basetimes with ID:2

A A A

m (2) 3

Num- Description
Number of units in the section (excluding base time)

(1)
(2) Number of base time units included in the section
(3) Serial number given to the section

5 9 Rev. 1cc92fc

intdash Edge Agent Developer Guide
06 Appendix

Completing transmission of a single section

This message indicates that the processing of one section has been completed on the server side.
When an ACK is received from the server, this message is output.

INFO : callbackRcvPacket(): REALTIME(c4a@e287) ACK 2 (45/45 units)

A A A A

m @)@
Num- Description
ber
(1) Measurement ID
(2) Serial number given to the section
(3) Number of units in this section
(4) Total number of units sent in this measurement

Saving data of one section as a file for retransmission

INFO : saveSection(): Store 2 units to /opt/vm2m/var/lib/intdash/meas/<SERVER_NAME>/<MEASUREMENT>/<SECTION>
—.bin

M (2)
Num- Description
ber
(1) Number of units in the section
(2) Path of the retransmission section file

Closing the connection to the server

INFO : callbackPacketEstablish(): REALTIME Upstream closed

6.7.4 Log messages about retransmissions via HTTP
The main log messages related to retransmissions via HTTP are as follows

Completing retransmission of one section

INFO : postSection(): RESEND 32187 units and ? basetimes with ID:80891

A A

m (2)
Num- Description

ber

(1) Number of units in the section

(2) Serial number given to the section

60 Rev. 1cc92fc

	01 Introduction
	1.1 What is Agent?
	1.2 Main features
	1.3 System requirements
	1.4 System configuration
	1.4.1 Device connector
	1.4.2 Plugin
	1.4.3 Manager
	1.4.4 Client

	02 Get started
	2.1 Installation
	2.2 Files to be installed
	2.3 Start and stop the Agent
	2.3.1 Start the Agent
	2.3.2 Stop the Agent
	2.3.3 Reference: Sequence from start to stop of the Agent

	03 Change settings
	3.1 Edge information setting
	3.2 Settings for using the pre-installed Device Connector
	3.2.1 Manager configuration file example (manager.conf)
	3.2.2 Device connector configuration file example

	3.3 Settings related to sending and receiving of data
	3.3.1 Setting example for sending and receiving CAN data (destination is not specified)

	3.4 Settings for sending timing (filtering on the sender's side)
	3.4.1 A setting example in which low frequency data is sent in real time and the rest of the data is sent later.
	3.4.2 Setting example to send some data in real time and send other data later
	3.4.3 Setting example to save all data as RAW data without sending
	3.4.4 Setting example to store all data for Resend client

	3.5 Settings related to saving RAW data
	3.5.1 Preventing any data from being saved as RAW data
	3.5.2 Preventing the storage of RAW data for a specific channel

	04 Add your own Device Connector
	4.1 Configure to use your own Device Connector
	4.2 Write to FIFO from Device Connector
	4.2.1 Writing data

	4.3 Read data from FIFO
	4.4 Automatic startup and termination of Device Connectors
	4.4.1 Automatically start the Device Connector when the Agent starts
	4.4.2 Terminate the Device Connector with a signal from the Agent

	05 Contact Us
	06 Appendix
	6.1 Base time
	6.2 Filter at the sender's side
	6.2.1 Filtering process on the sending side
	6.2.2 Filter configuration
	6.2.3 Common filter settings
	6.2.4 Filter type

	6.3 RAW data
	6.3.1 Saving and automatic deletion of RAW data
	6.3.2 Destination and file structure of the RAW data
	6.3.3 Tool for analyzing RAW data

	6.4 Retransmission data
	6.4.1 Automatic stop when disk space is low
	6.4.2 Save destination and file structure

	6.5 FIFO data format used between Agent and Device Connector
	6.5.1 Common header
	6.5.2 Data type-specific part

	6.6 All settings for Agent
	6.6.1 Replacing settings with environment variables
	6.6.2 Manager settings
	6.6.3 Client settings
	6.6.4 Device connector settings

	6.7 Agent logs
	6.7.1 Log message format
	6.7.2 Log messages about the Agent application
	6.7.3 Log messages about real-time transmission via WebSocket
	6.7.4 Log messages about retransmissions via HTTP

